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NOMENCLATURE 

= (n+ 1)/3; 
Grashof number, j3cT*xJIv2 : see equation (5); 

” = 2 (a- l/2): 
Nusselt number [KF/ay]),=, A’/(Ti- To); 
a dimensionless constant which describes the 
thermal boundary conditions; 
local dynamic pressure ; 
Prandtl number, va-’ ; 
characteristic radius for the Rayleigh No. [see 
equations (7) and (8)); 
= Gr,Pr ; 
local temperature ; 
local velocity in the principal flow direction; 
local velocity transverse to the principal flow 
direction ; 
a constant dimensional quantity. 

Greek symbols 
a, thermal diffusivi ty ; 
A thermal coefficient of volumetric expansivity ; 
V, kinematic viscosity; 
x> local similarity variable; 
IL, stream function, see equation (2). 

Subscripts 
1, intermediate region ; 
4 inner region ; 
0. outer region. 

INTRODUCTION 

EXPERIMENTAL and theoretical research has been devoted to 
the study of natural convective heat transfer in horizontal 
annuli for at least the last half century [l-8]. Many different 
techniques for correlating the mean heat transfer have been 
proposed [e.g. 1, 21. 

Accurate correlations for natural convective heat transfer 
in annuli with regular (e.g. concentric circular cylinders) and 
irregular (e.g. hexagonal cylinder inside a circular cylinder) 
boundaries is becoming increasingly important in many 
technological areas. For example, much research is being 
conducted in the development of shipping casks which are 
used to passively cool spent nuclear reactor fuel sub- 
assemblies [6, 71. The existence of such correlations can 
reduce or eliminate the need for experimentation for a 
particular application. 
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Previous investigators [e.g. l-31 have shown, via dimen- 
sional analysis of the governing equations, that the mean 
Nusselt number or heat transfer can be correlated as a 
function of the Rayleigh number, Prandtl number and a 
geometry or aspect ratio. Most of the fundamental con- 
siderations stopped at this point. As a result, the characteris- 
tic length and temperature for both the Nusselt and Rayleigh 
numbers were arbitrarily chosen. Itoh, Nishiwaki and Hirata 
[I] realized that the characteristic lengths of the Nusselt 
and Rayleigh number must be different. However, they 
determined such lengths by assuming that the thermal energy 
transport was due to thermal conduction rather than the 
coupled mechanisms of natural convection and thermal 
conduction. The present theory is based on fundamental 
concepts and a detailed formulation of the various flow 
regimes which exist in the annulus. This theory clearly 
specifies the characteristic quantities and their relation to the 
aspect ratio (A’/r’). Although the results which are presented 
here are for isothermal concentric circular cylinders (regular 
boundaries), there appears to be the capability to extend the 
technique to annuli with irregular boundaries. 

THEORY (SUMMARY) 

Consider a horizontal annulus of arbitrary cross-section 
with wall temperature distributions for the inner and outer 
boundaries of the form T;fl and Tbx$$ respectively (see 
Fig. 1). For the sake of brevity and clarity, it is assumed that 
Ti > T,. 

The steady two-dimensional annulus flow is divided into 
six distinct flow regions: (1) inner boundary layers (thermal 
and momentum), (2) outer boundary layers, (3) inner in- 
termediate, (4) outer intermediate, (5) plume, and (6) stably 
stratified. The boundary layer regions are perhaps the most 
important for data correlation and the easiest to understand 
in the classical sense. That is, the boundary layer regions are 
characterized by strong lateral diffusion and comparable 
convection. The boundary layers are formed near the annulus 
boundaries and are caused by the destabilizing local tempera- 
ture gradients in the gravity field. The plume region is located 
adjacent to the axis of symmetry and above the inner 
boundary where flow separation occurs. Mass flows (via the 
plume region) from the inner boundary layer to the outer 
boundary layer. 

The intermediate region has several important charac- 
terics. It is characterized by a flow reversal (i.e. uli = 0 = u,.) 
which is caused by recirculation of fluid in the annulus. The 
locus of points at which this reversal occurs identifies the 
boundary between the inner and outer intermediate regions. 
In addition, there is a significant thermal stratification in the 
x,-direction. Therefore, thermal diffusion is significant in the 
x,-direction but is negligible in the y,-direction. Finally, since 
the intermediate region flow occurs outside the boundary 
layers, that flow is inviscid. 

A complete formulation of the governing equations, as- 
sociated boundary conditions, and matching conditions are 
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FE. 1. A schematic of the steady two-dimensional laminar 
natural convective flow regions existing in a horizontal 

annulus. 

necessary in order to completely describe this annulus flow. 
Although this has been done, it is beyond the scope of this 
communication. It is unnecessary to solve such equations 
completely to obtain an appropriate form for the correlation 
parameters. However, such solutions would be useful to 
characterize new geometries and boundary conditions for 
physical problems in the absence of experimental data. 

The governing equations for the boundary layer regions 
are 

dT 2T d2T 
uz+uiiy=ady2 

a* 
Id=_, 

OY 

a* 
t’s --) 

dX 

a = (n+ 1)/3, 

t?I = 2(n - l/2) 

Gr, = jlgT-*x3v- 2, 
, I Ti’ = Ti - T,i 

and 

T: = T;, - T; 

In the above equations, unsubscripted quantities such as Gr,, 
n (or a) and T’ apply to both the inner and outer boundary 
layer regions. Further, Tii and T;, are constant characteristic 
temperatures in the inner and outer intermediate regions, 
respectively. 

For steady two-dimensional flow in a horizontal annulus, 
the mean heat transferred from the inner boundary must 
equal the mean heat transferred to the outer boundary, i.e. 

01 

- - 
i?Ti aT 
- z-2 

dYi yi = 0 dY0 L’ =o’ * 

(x 
L.. a Ti 

C”.. 
_ Q)-’ - 

f I x: ayi yi=o 

dxi = - (xomn, - xz)-’ 
f I “om’x~ dx, (3) 

x: ay, Y.=. 

where x* (corresponding to 4 = 0) is determined by 
matching, e.g. the inner boundary layer region to the stably 
stratified region. The quantity xi,,,., corresponds to 4 = a. It 
has been assumed that the spatial extent of the plume and 
stably stratified regions is sufficiently small that the above 
integrals are approximated adequately using the formulation 
results from the boundary layer region in equation (3). After 
the boundary layer transformation is substituted into equa- 
tion (3) and the results simplified, it is found that 

where 

T,’ - T,i = (7-L - T;,)UbT t(Bg y - *)ahQ - ’ (44 

and 
W 

UZ 
-p 

_,- 

r 
~-t g/$T-T,(y,=O)]cosqk (1) 

The minus and plus signs in the third equation apply to the 
outer and inner boundary layers, respectively. Curvature 
effects have been neglected. 

The following local similarity transformations, using coor- 
dinate stretching variables, were obtained 

x = Gr;‘ZyX-’ 

T- T,(y,=O) = T*Gry”-“O(X) 

and 

As noted earlier, since the temperaturegradients, with respect 
to y,, are small in the intermediate region, T,, = T;, = T;. 
Also note that when the inner and outer thermal boundary 
conditions are of the same form (e.g. isothermal) a, = a, = a 
(or n, = n, = n) so that the above become 

T; = (l+t)-‘(T;+tT;), T: = (l+r-‘)-‘(7-;-7-J 

t Differentiation of dimensionless functions such as 0, F 

P = pvZGr:“x-*G(X), 
and G with respect to x is denoted by e.g. O,, F, and G,, 

(2)t respectively. 
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and where 

T,* = (1 +c))’ (T;- T;). (5) 

In identifying the appropriate correlation relationship, the 
mean Nusselt number is defined as 10’ < Ra, < 10’,0.706 I Pr I 3100, and0 .I25 I A’:r: i 

2.0 and Al/r; is the aspect ratio for the annulus. It is interesting 
to note that Pr”* = 0.9975 & 2’:,, (nearly 1.0) for all values of 
Pr included in the correlation. Since curvature effects arc not 
included, this correlation is not expected to be valid for A’/r’ 
> 3.0. 

_ dT A’ 
Nu, =- 

r’); g=O (Tj- T;)’ 
(6) 

With this definition for NUB, no additional arbitrary choices 
will be made for a reference temperature or length for the 
Grashof (Gr) or Rayleigh (Ra) number. Using the similarity 
transformation for Ti, we find that the correlation for the 
laminar natural convective mean heat transfer in a horizontal 
annulus is 

G 
4 

= C’ Prt’ -%)I6 Ra, 1% 1~6 = Nu 
A.’ (7) 

where 

RaRi = Pr GrR = /Isa-’ v-’ TT Rf 

R: = (1+~-1)6/‘I-5n,) (43l5n,-3)!(5n, - I, (A76/‘5”,- 11 

and 

Cx = [ J;AOt)d&]’ 

x I;[ [c”j&) dgi]ln”‘- ‘I’ O,,(O) de& 

The Prandtl number (Pr) was included so that the effect of 
different fluids could be included explicitly in the correlation. 

RESULTS AND DSCUSSION 

Due to the lack of experimental data for irregular annuli, 
the correlation defined in equations (4~(7) has been evalu- 
ated for the case of isothermal concentric cylinders. From 
equation (7), the correlation for the mean Nusselt number in 
an annulus formed by isothermal (ni = no = l/2) concentric 
circular cylinders (C, = 1 = C,) is 

where 

Nu, = C, Pr-L’4 RaR,1’4 (8) 

Rf = (1+5-‘)~4(r1)~‘(~)4,5 = s 
0 

and 

Notice that C3 is a function of Prandtl number (Pr) through 
its dependence on O,,(O). Since Pr can vary significantly for 
different fluids, equation (8) was rewritten in a form which 
makes the least squares data reduction simpler (e.g. see [S]) 

where 

Nu, = C4 Pr”* Ra I:4 
R, (9) 

n* = C,+C, Prm”3 

and C,, Cs and C, are constants. 
The versatility of the correlation technique was demon- 

strated using the steady two-dimensional laminar mean heat 
transfer measurements made by Kraussold [s], and Kuehn 
and Goldstein [3,4]. The result (Fig. 2) of the least squares fit 
is 

Nu, = 0.796 I+“* Ra “4 
Ri (10) 

n* = 0.00663 - 0.0351 Pr 

These results, which display the ability of the present 
correlation technique to correlate experimental data over a 
large parameter range, are very encouraging. Even with these 
large parameter variations, the present correlation technique 
collapses all the experimental data to a single line, which is 
given by equation (IO) for the case of isothermal concentric 
cylinders. Previous correlations have resulted in a family of 
curves with aspect ratio as a parameter, due to the arbitrary 
selection of a characteristic length. Based on the work 
completed to date, the physical problem appears to be 
completely specified by equation (7) when the following is 
known: boundary conditions (i.e. )I), the fluid (i.e. fr), the 
aspect ratio (A’/r;), and the Grashof or Rayleigh number. 

This correlation technique was recently found to apply to 
the irregular annulus formed by an inner hex and an outer 
concentric circular cylinder. This approach is unique from 
previous ones in that it demonstrates that u priori choices of 
the reference temperature and length can be made for either 
the Nusselt number or the Rayleigh number but not for both. 
The definition of remaining reference quantities is uniquely 
determined by the former choice. 
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